Satisfying the Direct Laser Acceleration Resonance Condition in a Laser Wakefield Accelerator
نویسندگان
چکیده
In this proceeding, we show that when the drive laser pulse overlaps the trapped electrons in a laser wakefield accelerator (LWFA), those electrons can gain energy from direct laser acceleration (DLA) over extended distances despite the evolution of both the laser and the wake. Through simulations, the evolution of the properties of both the laser and the electron beam is quantified, and then the resonance condition for DLA is examined in the context of this change. We find that although the electrons produced from the LWFA cannot continuously satisfy the DLA resonance condition, they nevertheless can gain a significant amount of energy from DLA.
منابع مشابه
شبیهسازی ذرهای شتاب دادن الکترونها در پلاسمای کم چگال
One of the interesting Laser-Plasma phenomena, when the laser power is high and ultra intense, is the generation of large amplitude plasma waves (Wakefield) and electron acceleration. An intense electromagnetic laser pulse can create plasma oscillations through the action of the nonlinear pondermotive force. electrons trapped in the wake can be accelerated to high energies, more than 1 TW. Of t...
متن کاملLaser wakefield acceleration of electrons with ionization injection in a pure N5+ plasma waveguide
Articles you may be interested in Dependence of electron trapping on bubble geometry in laser-plasma wakefield acceleration Self-truncated ionization injection and consequent monoenergetic electron bunches in laser wakefield acceleration Phys. Enhancement of injection and acceleration of electrons in a laser wakefield accelerator by using an argon-doped hydrogen gas jet and optically preformed ...
متن کاملRole of direct laser acceleration in energy gained by electrons in a laser wakefield accelerator with ionization injection
We have investigated the role that the transverse electric field of the laser plays in the acceleration of electrons in a laser wakefield accelerator operating in the quasi-blowout regime through particle-in-cell code simulations. In order to ensure that longitudinal compression and/or transverse focusing of the laser pulse is not needed before the wake can self-trap the plasma electrons, we ha...
متن کاملStudy of Laser Wakefield Acceleration by using Particle-in-cell Simulation
Optimization and control of electron beams is a major issue in laser wakefield accelerators. Based on two-dimensional particle-in-cell simulations, we propose a way to control the beam quality in laser wakefield acceleration using proper optimization of laser pulse length. The laser pulse with varying pulse duration has been considered that fulfils the resonance condition ) c ( p L of pla...
متن کاملOverview of Plasma-Based Accelerator Concepts - Plasma Science, IEEE Transactions on
An overview is given of the physics issues relevant to the plasma wakefield accelerator, the plasma beat-wave accelerator, the laser wakefield accelerator, including the self-modulated regime, and wakefield accelerators driven by multiple electron or laser pulses. Basic properties of linear and nonlinear plasma waves are discussed, as well as the trapping and acceleration of electrons in the pl...
متن کامل